Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)

First "Separate the Variables" by rearranging the equation to get the ys on the LHS and the xs on the RHS:

(1/y) dy=x dx

Now Integrate:

Integral(1/y) dy = Integral(x) dx

ln(y)=x2/2 + constant of integration (c)

Rearrange to get y=:

e(lny)=e(x2/2)+c

y=e(x^2/2)+c = e* ex^2/2 = Ae0.5x^2

This is your GENERAL SOLUTION (GS)

Now plug in the coordinates:

3=Ae0.50=A1=A

A=3

So:

y=3e0.5x^2

This is the PARTICUAR SOLUTION (PS) and also the answer to original question

CC
Answered by Christian C. Maths tutor

3852 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equations: x=2sin(t) and y=1-cos(2t). Find dy/dx at the point where t=pi/6


A trolley of negilible mass on horizontal tracks is at rest. A person of mass 50kg is standing on the trolley with a bag of mass 10kg. The person throws the bag off the trolley horizontally with a velocity of 3m/s. Calculate the velocity of the man.


Find the surface area of a hand held fan (modeled with negligible depth) with radius 8 cm and a 60 degree angle at the centre


Find the integral of (cosx)*(sinx)^2 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning