Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)

First "Separate the Variables" by rearranging the equation to get the ys on the LHS and the xs on the RHS:

(1/y) dy=x dx

Now Integrate:

Integral(1/y) dy = Integral(x) dx

ln(y)=x2/2 + constant of integration (c)

Rearrange to get y=:

e(lny)=e(x2/2)+c

y=e(x^2/2)+c = e* ex^2/2 = Ae0.5x^2

This is your GENERAL SOLUTION (GS)

Now plug in the coordinates:

3=Ae0.50=A1=A

A=3

So:

y=3e0.5x^2

This is the PARTICUAR SOLUTION (PS) and also the answer to original question

CC
Answered by Christian C. Maths tutor

3515 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by parametric equations: x = t^(2) + 2, and y = t(4-t^(2)). Find dy/dx in terms of t, hence, define the gradient of the curve at the point where t = 2.


a) Find the indefinite integral of sec^2(3x) with respect to x. b) Using integration by parts, or otherwise, find the indefinite integral of x*sec^2(3x) with respect to x.


A particle A rests on a smooth inclined plane, it is connected to a particle B by a light inextensible string that is passed over a fixed smooth pulley at the top of the plane. B hangs freely. Find the acceleration of the system and tension in the string.


What is differentiation and what can it tell me?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences