Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)

First "Separate the Variables" by rearranging the equation to get the ys on the LHS and the xs on the RHS:

(1/y) dy=x dx

Now Integrate:

Integral(1/y) dy = Integral(x) dx

ln(y)=x2/2 + constant of integration (c)

Rearrange to get y=:

e(lny)=e(x2/2)+c

y=e(x^2/2)+c = e* ex^2/2 = Ae0.5x^2

This is your GENERAL SOLUTION (GS)

Now plug in the coordinates:

3=Ae0.50=A1=A

A=3

So:

y=3e0.5x^2

This is the PARTICUAR SOLUTION (PS) and also the answer to original question

CC
Answered by Christian C. Maths tutor

3802 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the sum of the first 10 terms of the geometric series 32 + 16 + 8 + ... ?


John wants to separate a rectangular part of his garden for his puppy. He has material for a 100-meter long fence and he plans to use one side of his house as a barrier. How should John select the sizes of his fence in order to gain the biggest territory?


Using logarithms solve 8^(2x+1) = 24 (to 3dp)


A curve has the equation y = x^4 - 8x^2 + 60x + 7. What is the gradient of the curve when x = 6?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning