Prove, using the product rule that, the derivative of x^{n} is nx^{n-1} where n is a natural number. What if n is an integer or n is rational?

We know that d / dx (x) = 1. Looking at x^2 as a specific example, and using the product rule, we see that d/dx(x^2) = xd/dx(x) + d/dx(x)x = x + x = 2x. Similarly for x^3, d/dx(x^3) = 3 * x^2 * d/dx(x) = 3 x^2 Following this logic for general n, we have that d/dx(x^n) = nx^(n-1).If n is negative then we need to use that the derivative of 1 / x = - 1 / x^2. To show this, let y = 1/x so xy = 1. Then differentiate with respect to x to get that xdy/dx + y = 0, and so xdy/dx = -1 / x which is what we need.We can now proceed in the same way. d/dx(1 / x^-n) = -n * 1 / x^(-n - 1) * -1 / x^2 = nx^(n-1).For rational n we need a slightly different approach. Let y = x^n = x^(a/b) where a and b are integers, so we have that y^b = x^a. Differentiating this with respect to x gives, using the previous parts, that by^(b-1)dy/dx = ax^(a-1) and so dy/dx = (a/b)(x^(a - 1) / y^(b-1)) = (a / b)(x^(a-1) / x^(a(b-1) / b)) = (a/b)x^((a - 1) - a(b-1)/b) = (a/b)(x^(ba - b - ab + a) / b) = (a/b)x^(a / b - 1).

AH
Answered by Alfred H. Maths tutor

9818 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do we need the constant of integration?


A block of mass 5kg is at rest on a smooth horizontal table, and connected to blocks of 3kg and 4kg which are hanging by strings via pulleys on either end of the table. Find the acceleration of the system and the tension in each string.


Show that sqrt(27) + sqrt(192) = a*sqrt(b), where a and b are prime numbers to be determined


Does the equation x^2 + 2x + 5 = 0 have any real roots?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences