Why is there always constant of integration when you evaluate an indefinite integral?

When you are asked to integrate a function f(x), you are really being asked the question: "what function F(x) exists such that when you take its derivative, you are left with f(x)?"

Let us first consider differentiation.

Let F(x)=x2

We know the derivative of this is f(x)=2x but what if F(x)=x2+5? 

It turns out the derivative of this is also f(x)=2x. That is because the derivative of 5 is 0 and so that disappears from the derivative.

In fact the derivative of any constant is 0 so the derivative of F(x)=x2+C (where C is any real number) is f(x)=2x

So now let us talk about integration.

We know that integrating f(x)=2x gives F(x)=x2 because when you differentiate F(x) you are left with f(x). But this is also true for F(x)=x2+5  or in fact for F(x)=x2+C (where C is any real number).

And therefore the fact that the derivative of any constant is 0 is the origin of the constant of integration.

AS
Answered by Akhil S. Maths tutor

3683 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 3x^3 - 7x + 10. Point A(-1, 14) lies on this curve. Find the equation of the tangent to the curve at the point A.


How do you find the integral of (2+5x)e^3x ?


Given that f(x) = (x^2 + 3)(5 - x), find f'(x).


Differentiate y = 2x^3 + 6x^2 + 4x + 3 with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences