What is the derivative of ln(x)?

First let y=ln(x).

Recall that the exponential function, ex, is defined as the inverse of the logarithmic function, ln(x).

To make x the subject of the formula, use the inverse function exp. This gives that x=ey.

Now, differentiate both sides with respect to y and recall that d/dx(ex)=ex. This gives dx/dy=ey.

Remember for a derivative, dy/dx=1/(dx/dy).

Therefore, dy/dx=1/ey.

Finally, from above, x=ey.

Substituting for ey we have dy/dx=1/x which is our final result.

Therefore the derivative of ln(x), is dy/dx=1/x.

BG
Answered by Benjamin G. Maths tutor

7641 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Discriminants and determining the number of real roots of a quadratic equation


Differentiate sin(x)*x^2


How do I sketch the graph y = (x^2 + 4*x + 2)/(3*x + 1)


Find the x-values of the turning points on the graph, y=(3-x)(x^2-2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences