Solve the simultaneous equations: 4x + y = 25, x - 3y = 16

We need to have either the same number of x's or the same number of y's in each equation so that we can add or subtract them to be left with just x or just y. We can do this by multiplying the second equation by 4:

4x - 12y = 64

Now both equations have "4x" in them, so if we subtract one from the other we will get rid of the x's and be left with just y's.

                4x + y = 25

MINUS     4x - 12y = 64

EQUALS         13y = -39

We then divide both sides of the equation to find what y equals:

y = -39/13 = -3

Now we substitute our value for y back into one of the equations to find what x is.

x - 3(-3) = 16

x + 9 = 16

x = 16 - 9 = 7

We can check our answers by substituting both the x and y values into the two equations. If the equations both balance then our answers are correct!

LH
Answered by Lydia H. Maths tutor

34374 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify x^2 - 9x + 20


A class of pupils were asked about how they travelled to school on a particular day. 1/6 of the pupils were driven to school in a car. 2/5 of the pupils took the bus. The rest of the pupils walked to school. Calculate the fraction of pupils who walk


Solve the following inequality: x^2 + x -12<0


Using a method that is not factorisation, solve the equation (x^2) + 3x -4 = 0. Hence, sketch the curve produced by the equation


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning