Solve the simultaneous equations: 4x + y = 25, x - 3y = 16

We need to have either the same number of x's or the same number of y's in each equation so that we can add or subtract them to be left with just x or just y. We can do this by multiplying the second equation by 4:

4x - 12y = 64

Now both equations have "4x" in them, so if we subtract one from the other we will get rid of the x's and be left with just y's.

                4x + y = 25

MINUS     4x - 12y = 64

EQUALS         13y = -39

We then divide both sides of the equation to find what y equals:

y = -39/13 = -3

Now we substitute our value for y back into one of the equations to find what x is.

x - 3(-3) = 16

x + 9 = 16

x = 16 - 9 = 7

We can check our answers by substituting both the x and y values into the two equations. If the equations both balance then our answers are correct!

LH
Answered by Lydia H. Maths tutor

33662 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you solve inequalities when they involve quadratics? i.e x^2+x-6<0


a) If x=4, work out 3(x^2). b) Solve 6x-3=x+11


expand the brackets (x+5)(x+3) furthermore what are the two values of x


How do you calculate the hypotenuse of a right angle triangle if the two shorter sides are 6 and 8?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning