Solve the simultaneous equations: 4x + y = 25, x - 3y = 16

We need to have either the same number of x's or the same number of y's in each equation so that we can add or subtract them to be left with just x or just y. We can do this by multiplying the second equation by 4:

4x - 12y = 64

Now both equations have "4x" in them, so if we subtract one from the other we will get rid of the x's and be left with just y's.

                4x + y = 25

MINUS     4x - 12y = 64

EQUALS         13y = -39

We then divide both sides of the equation to find what y equals:

y = -39/13 = -3

Now we substitute our value for y back into one of the equations to find what x is.

x - 3(-3) = 16

x + 9 = 16

x = 16 - 9 = 7

We can check our answers by substituting both the x and y values into the two equations. If the equations both balance then our answers are correct!

LH
Answered by Lydia H. Maths tutor

34277 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Raya buys a van for £8500 plus VAT at 20%.Raya pays a deposit for the van. She then pays the rest of the cost in 12 equal payments of £531.25 each month. Find the ratio (in simplest form) of the deposit Raya pays to the total of the 12 equal payments.


Find the turning point of the curve whose equation is y = (x-3)^2 + 6.


Find the value of 9^(-1/2)


A cuboid has length x cm. The width of the cuboid is 4 cm less than its length. The height of the cuboid is half of its length. The surface area of the cuboid is 90 cm^2 . Show that 2x^2 − 6x − 45 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning