Differentiate with respect to x y=(x^3)ln2x

To be able to differentiate this we need to use the product rule as we want to differentiate two functions multiplied together. The product rule states that if y=uv, then : dy/dx= u dv/dx + v du/dx. Let u= x^3 and v= ln2x. Then du/dx= 3x^2 and dv/dx= 2/2x. Putting this together using the formula gives: dy/dx= x^3 * 2/2x + ln2x * 3x^2. This simplifies to dy/dx= 3x^2ln2x+x^2

JP
Answered by Jennifer P. Maths tutor

12015 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you show that a vector is normal to a plane in 3D space?


Use the product rule to differentiate y=2xsinx


Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.


solve sin(2x)=0.5. between 0<x<2pi


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning