Differentiate with respect to x y=(x^3)ln2x

To be able to differentiate this we need to use the product rule as we want to differentiate two functions multiplied together. The product rule states that if y=uv, then : dy/dx= u dv/dx + v du/dx. Let u= x^3 and v= ln2x. Then du/dx= 3x^2 and dv/dx= 2/2x. Putting this together using the formula gives: dy/dx= x^3 * 2/2x + ln2x * 3x^2. This simplifies to dy/dx= 3x^2ln2x+x^2

JP
Answered by Jennifer P. Maths tutor

11789 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Pushing a mass up a slope and energy


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


Given that y = 5x^2 - 4/(x^3), x not equal to 0, find dy/dx.


How do I rationalise the denominator of a fraction which consists of surds?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences