Differentiate with respect to x y=(x^3)ln2x

To be able to differentiate this we need to use the product rule as we want to differentiate two functions multiplied together. The product rule states that if y=uv, then : dy/dx= u dv/dx + v du/dx. Let u= x^3 and v= ln2x. Then du/dx= 3x^2 and dv/dx= 2/2x. Putting this together using the formula gives: dy/dx= x^3 * 2/2x + ln2x * 3x^2. This simplifies to dy/dx= 3x^2ln2x+x^2

JP
Answered by Jennifer P. Maths tutor

12423 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the definite integral between negative limits of a function with positive values negative even though the area bound by the x-axis is positive? for example the integral of y=x^2 between x=-2 and x=-1


How to differentiate with respect to x, xsin2x.


a) Find the indefinite integral of sec^2(3x) with respect to x. b) Using integration by parts, or otherwise, find the indefinite integral of x*sec^2(3x) with respect to x.


What is the normal distribution and how do I use it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning