Differentiate with respect to x y=(x^3)ln2x

To be able to differentiate this we need to use the product rule as we want to differentiate two functions multiplied together. The product rule states that if y=uv, then : dy/dx= u dv/dx + v du/dx. Let u= x^3 and v= ln2x. Then du/dx= 3x^2 and dv/dx= 2/2x. Putting this together using the formula gives: dy/dx= x^3 * 2/2x + ln2x * 3x^2. This simplifies to dy/dx= 3x^2ln2x+x^2

JP
Answered by Jennifer P. Maths tutor

11494 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y= (6x^2 - 5)^(3/2) with respect to x


Given y =( 2x+1 )^0.5 and limits x = 0 , x = 1.5 , find the exact volume of the solid generated when a full rotation about the x-axis .


How and when do you use integration by parts?


∫ (ln(x)/(x*(1+ln(x))^2) dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences