Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1

Firstly, Integrate the f'(x) equation by raising the power by 1 and then dividing by the new power and adding a constant c. This gives you f(x)=(12x^3)/3 -(8x^2)/2 + x + c Then you simplify, f(x)=4x^3 -4x^2 + x + c Insert your y and x values to find c, 0= 4(-1) - 4(1) -1 + c Therefore c= 9 and f(x)= 4x^3 -4x^2 + x + 9

DM
Answered by Daniel M. Maths tutor

13881 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The polynomial f(x) is defined by f(x) = 18x^3 + 3x^2 + 28x + 12. Use the Factor Theorem to show that (3x+2) is a factor of f(x).


When you integrate, why do you need to add a +C on the end?


Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


Solve e^x-6e^-x=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning