integrate by parts ln(x)/x^3

The question states to use integration by parts. So first we recall the integration by parts formula is integrate(u(x)v'(x)  dx)=     (v(x)u(x))    -    integrate(u'(x)v(x)   dx)+c (note these integrals are with respect to x.. u(x) v(x) are functions of x and u'(x)=du/dx). To integrate ln(x)/x^3 notice that ln(x)/x^3 can be written as ln(x)*1/x^3. Then we let u(x)=ln(x) as we can differentiate ln(x) to 1/x but cannot easily integrate ln(x). So v(x)=1/x^3 Putting this into the formula we get integrate(ln(x)/x^3  dx)=  -0.5x^(-2) *ln(x)-integrate(-0.5x^(-2)*x^(-1)  dx)+c=  -0.5ln(x)/x^2+1/(4x^2)+c

PS
Answered by Prit S. Maths tutor

3815 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 16x^2 + 7x - 3, find dy/dx [3 marks]


differentiate: y^2 + 3xy + x + y = 8


The curve C has equation 4x^2 – y^3 – 4xy + 2^y = 0 The point P with coordinates (–2, 4) lies on C . Find the exact value of dy/dx at the point P .


Find the tangent of the following curve, y=xe^x, at x=1 expressing it in the form y=mx+c?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning