A Curve has parametric equation x=2sin(t), y= 1+cos(2t), -pi/2<=t<=pi/2. a) Find dy/dx when t=pi/3. b) Find the Cartesian equation for the curve in form y=f(x), -k<=x<=k. c) Find the range of f(x)

x=2sin(t), y=1+cos(2t)

a) By chain rule, dy/dx = (dy/dt)/(dx/dt)
dy/dt = -2sin(2t), dx/dt= 2cos(t)
dy/dx= -sin(2t)/cos(t)
dy/dx=-2sin(t)cos(t)/cos(t)
dy/dx=-2sin(t)

when t = pi/3, 
dy/dx= -sqrt(3)

b) dy/dx = -2sin(t)= -x
y= -x^2/2

k=2 as x=2sin(t) has max and min values at 2, -2

c) Draw a sketch
Sketch shows symmetrical quadratic with min value 0, max values of 2. 
0<=f(x)<=2

MB
Answered by Max B. Maths tutor

10979 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following expression with respect to x by parts: (2*x)*sin(x)


How do you integrate by parts?


How do you prove a mathematical statement via contradiction?


The quadratic equation 2x^2+8x+1=0 has roots a and b. Write down the value of a+b and ab and a^2+b^2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning