Integrate 2x/(x^2+3) using the substitution u=x^2+3

u=x2 + 3

du/dx=2x

dx=du/2x

2x/(x2+3) dx becomes (2x/u) * (du/2x)

the 2x terms cancel out giving 1/u du

this integrates to ln(u)+c becoming ln(x2+3)+c

TS
Answered by Tom S. Maths tutor

14142 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate sin(5x) and 3cos(x) and 3tan(5x)


Solve the simultaneous equations: y + 4x + 1 = 0, and y^2 + 5x^2 + 2x = 0.


Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x


Find the stationary points of the curve y=2*x^3-15*x^2+24*x+17. Determine whether these points are maximum or minimum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning