Differentiate f(x) = (x+3)/(2x-5) using the quotient rule.

For a quotient f(x) = u(x)/v(x), the derivative is f'(x) = (vu'(x) - uv'(x))/v(x)2. Applying this to the given function, we find u(x) = x+3 and v(x) = 2x-5. So, u'(x) = 1 and v'(x) = 2. We can then put these into the expression for the quotient rule: f'(x) = ((2x-5)*1 - (x+3)*2)/(2x-5)= (2x - 5 - 2x - 6)/(2x-5)2 = -11/(2x-5)2.

SR
Answered by Sara R. Maths tutor

5841 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a function f(x)=3x^2+5x-1, find its derivative.


How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?


Why is the derivative of x^n, nx^(n-1)?


How do I use numerical methods to find the root of the equation F(x) = 0?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning