Find the area under the curve y = sin(2x) + cos(x) between 0 and pi/2

to find the area integrate the function between 0 and pi/2:

indefinite integral of y = -1/2 cos(2x) + sin(x) + c

ignore c and input boundary conditions:

[-1/2 cos(pi) + sin(pi/2)] - [-1/2 cos(0) + sin(0)] = [1/2 + 1] - [-1/2 + 0] = 2

HD
Answered by Harry D. Maths tutor

6930 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.


Solving a quadratic with ax^2 e.g. 2x^2 - 11x + 12 = 0


A cannonball is fired at an angle of 30 degrees and a velocity of 16 m/s. How long does it take (to 2 significant figures) for the cannonball to reach the ground?


A curve has the equation y=3x^3 - 7x^2+52. Find the area under the curve between x=2 and the y-axis.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences