How do I integrate ∫ xcos^2(x) dx ?

First, recall that when integrating, squared trigonometric functions often cause issues. Therefore, use the identity: cos^2(x) = (cos(2x) + 1)/2 to remove this power, giving the integral: ∫ (xcos(2x))/2  + x/2 dx.

This can be split into two integrals: ∫ (xcos(2x))/2 dx + ∫ x/2 dx

The second integral [ ∫ x/2 dx] is simple, integrating to x^2/4

For the first, trickier integral [∫ (xcos(2x))/2 dx], notice that this integral appears to be the multiple of two functions, so integration by parts is likely to come in handy.  Set u = x/2 and dv/dx = cos(2x). Then du/dx = 1/2 and v = ∫ cos(2x) dx = (sin(2x))/2 

Use the integration by parts formula: integral = uv - ∫v(du/dx) dx = xsin(2x)/4 - ∫sin(2x)/4 = xsin(2x)/2 +cos(2x)/8

Put everything together, giving a final integral = xsin(2x)/4 +cos(2x)/8 + x^2/4 + c (don't forget to add the arbitrary constant!) 

SS
Answered by Stephi S. Maths tutor

24304 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 2x^5 + 5x^4 1 . (a) Find: (i) dy/ dx [2 marks] (ii) d^2y/ dx^2 (b) The point on the curve where x ¼ 1 is P. (i) Determine whether y is increasing or decreasing at P, giving a reason for your answer.


Can you teach me how to rationalise the denominator of an algebraic expression?


Integrate this funtion f'(x)=2x +4 with respect to x (C1 integration)


why does log a + log b = log (ab)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning