Integrate the function f(x)=lnx

This question must be attempted by integration by parts since it cannot be integrated outright and we can thus change the integral to 1 times lnx. We can then use the formula for integration by parts of I(integral of the function)=u.v-(v.du/dx)dx. We set u to be equal to lnx and dv/dx to be equal to 1. We can differentiate lnx easily to become 1/x for du/dx, then we can integrate dv/dx to become x. By the formula we get (xln(x)-(1dx), then the integral of 1 is simply x and since the function has no limits we must add a +c for a constant. Thus the function is equal to (xln(x)-x+c)

SS
Answered by Srikant S. Maths tutor

3755 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of (2(3x+2))/(3x^2+4x+9).


Why do we need to differentiate?


Find the cartesian equation of a curve?


The point P lies on the curve C: y=f(x) where f(x)=x^3-2x^2+6x-12 and has x coordinate 1. Find the equation of the line normal to C which passes through P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning