A bag contains red discs, white discs and blue discs. 1/6 of the discs are red, 1/4 of the discs are blue. What is the smallest possible number of white discs?

We are given the fractions representing the number of discs in the bag. When comparing fractions, we should first find a common denomenator for them. The smallest common denomenator for 6 and 4 is 12 (43=12; 62=12). When converting fractions, remember the rule "Whatever we do to the bottom, we must do to the top." This means that 1/6 = 2/12 and 1/4 = 3/12. Now we add these two fractions together to get 5/12. This means that out of 12 discs in the bag, 5 of them are red and blue. This would allow us to work out the white discs to be 12-5=7 discs.

GC
Answered by Grimonia C. Maths tutor

6094 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Derive the quadratic formula form the general quadratic equation


Solve x^2+3x-18=0 for x


For a cuboid, the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². (a) Construct an equation to calculate the surface area.


The perimeter of a right-angled triangle is 60cm. The lengths of its sides are in the ratio 3:4:5. Work out the area of the triangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning