For a curve of equation 2ye^-3x -x = 4, find dy/dx

here the student needs to use both implicit differentiation and the product rule.

I would differentiate term by term for this problem.

for 2ye^-3x you have to use the proudct rule. uv differentiates to uv' +u'v 

so the above differentiates to -6ye^-3x +2(dy/dx)e^-3x

-x differentiates to -1

4 is a constant so differentiates to 0.

leads to ; -6ye^-3x +2(dy/dx)e^-3x -1=0

which can be written as 2(dy/dx)e^-3x = 6ye^-3x +1

leads to dy/dx= (6ye^-3x +1)/2e^-3x =(e^3x)/2 + 3y

JB
Answered by Jack B. Maths tutor

3804 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Supposing y = arcsin(x), find dy/dx


Find the equation of the normal to the curve 2x^3+3xy+2/y=0 at the point (1,-1)


f(x) = x^3 + 3x^2 + 5. Find (a) f ′′(x), (b) ∫f(x)dx.


f(x)= 2x^3 -7x^2 + 2x +3. Given that (x-3) is a factor of f(x), express f(x) in a fully factorised form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning