Solve x^2 > |5x - 6|

We need to split the problem into two cases to remove the abs sign. Case 1: 5x - 6 >= 0, equivalent to x >= 6/5. In this case the problem is now to find the values of x that satisfy x2 > 5x - 6. Rearranging and factorising gives (x-3)(x-2) > 0. By sketching the graphs to this, it's easy to see it is greater than zero when x < 2 and x > 3. In this case, we had the constraint that x >= 6/5. So the satisfying values for case 1 is 6/5 <= x < 2, and x > 3.

Case 2: 5x - 6 < 0, equivalent to x < 6/5. Now the problem is x2 > -(5x - 6), or after rearranging, x2 + 5x - 6 > 0. Factorising gives (x+6)(x-1) > 0. By sketching this graph, it's easy to see it is greater than zero when x < -6, and when x > 1. In this case, we had the constraint that x < 6/5. So the satisfying values for case 2 is x < -6, and 1 < x < 6/5. Bringing the two cases together we have x < -6, 1 < x < 6/5, 6/5 <= x < 2, and x > 3. This simplifies to x < -6, 1 < x < 2, x > 3. 

JH
Answered by James H. Maths tutor

3395 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the cosine rule and how do I use it?


The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) dy/dx (ii) d^2y/dx^2 (3 marks) (b) Verify that C has a stationary point when x = 2 (2marks) (c) Determine the nature of this stationary point, giving a reason for your answer. (2)


Curves C1 and C2 have equations y= ln(4x-7)+18 and y= a(x^2 +b)^1/2 respectively, where a and b are positive constants. The point P lies on both curves and has x-coordinate 2. It is given that the gradient of C1 at P is equal to the gradient of C2 at P.


By writing tan x as sin x cos x , use the quotient rule to show that d dx ðtan xÞ ¼ sec2 x .


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences