Find dy/dx in terms of t of the parametric equations x=4e^-2t, y=4 - 2e^2t

x=4e-2t, y=4-2e2t

dy/dx = dy/dt * dt/dx

dy/dt = -4e2t

dx/dt = -8e-2t           dt/dx = -1/8 * e2t

dy/dx = (-4e2t)(-1/8 * e2t) = 1/2 * e4t

dy/dx = 0.5e4t

 

JM
Answered by Josh M. Maths tutor

5169 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y > 0, find ∫((3y - 4)/y(3y + 2)) dy (taken from the Edexcel C4 2016 paper)


Circle C has equation x^2 + y^2 - 6x + 4y = 12, what is the radius and centre of the circle


how find dy/dx of parametric equations.


Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences