Find dy/dx in terms of t of the parametric equations x=4e^-2t, y=4 - 2e^2t

x=4e-2t, y=4-2e2t

dy/dx = dy/dt * dt/dx

dy/dt = -4e2t

dx/dt = -8e-2t           dt/dx = -1/8 * e2t

dy/dx = (-4e2t)(-1/8 * e2t) = 1/2 * e4t

dy/dx = 0.5e4t

 

JM
Answered by Josh M. Maths tutor

5130 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the value of sin(theta), cos(theta), tan(theta) where theta = 0, 30, 45, 60, 90


Differentiate with respect to x, y = (x^3)*ln(2x)


Integrate sin^2(x)


Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences