Find dy/dx in terms of t of the parametric equations x=4e^-2t, y=4 - 2e^2t

x=4e-2t, y=4-2e2t

dy/dx = dy/dt * dt/dx

dy/dt = -4e2t

dx/dt = -8e-2t           dt/dx = -1/8 * e2t

dy/dx = (-4e2t)(-1/8 * e2t) = 1/2 * e4t

dy/dx = 0.5e4t

 

JM
Answered by Josh M. Maths tutor

5274 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using Pythagoras' theorem, show that sin^2(x)+cos^2(x)=1 for all x.


Find the derivative of the function y = (2x + 12)/(1-x)


Solve the simultaneous equations: y-2x-4 = 0 (1) , 4x^2 +y^2 + 20x = 0 (2)


What is the area bound by the x-axis, the lines x=1 and x=3 and the curve y=3x^(2)-1/x ? Answer in exact form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences