Why are the properties of diamond and graphite different despite both being made of the same constituent element, carbon.

Steps to address questions

  1. Structure

  2. Bonds

  3. Free electrons

Diamond is very hard and is a poor conductor of electricity as each carbon atom is strongly bonded to 4 other carbon elements by strong covalent bonds in a tetrahedral structure so there are no free electrons to form the "sea of free electrons" and conduct electricity.

However, in graphite, each carbon atom is only bonded by strong covalent bonds to 3 other carbon elements in flat layers of carbon atoms. Hence, there are weak intermolecular forces of attraction "Van Der Waals" forces of attraction between the different layers of carbon atoms so this allows the layers to slide over each thus making it slipper. As each carbon atom is only bonded to 3 other carbons, there is a free delocalised electron in each carbon atom which is free to move and conduct electricity. 

TF
Answered by Tania F. Chemistry tutor

2176 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

How do endothermic and exothermic reactions differ?


Why does the structure of lithium oxide allow it to conduct electricity under certain conditions?


Describe and explain how changes in the earth atmosphere, from the Precambrian Era (where the earth as occupied by volcanoes), have changed to form the surface of the Earth today and its atmosphere.


Sodium’s atomic number is 11 and its mass number is 23. How many protons, electrons and neutrons does it have?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences