Integrate with respect to x ) dy/dx= 6x^5

The integral of any equation let the example be dy/dx = ax^n The integral of (RHS) dy/dx (because when we integrate we are integrating both sides) is y The integral of (LHS) ax^n is  [ax^(n+1)]/[n+1] when integrating there is always a constant that is unknown without any other equations that hold. Thus the integral is y= [ax^(n+1)]/[n+1] +C (Where C is a currently unknown constant)

NM
Answered by Nojus M. Maths tutor

4824 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given f(x): 2x^4 + ax^3 - 6x^2 + 10x - 84, and knowing 3 is a root of f(x), which is the value of a?


Find the indefinite integral of sin(x)*e^x


Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.


Use the double angle formulae and the identity cos(A+B)≡cos(A)cos(B)−sin(A)sin(B) to obtain an expression for cos 3x in terms of cos x only


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning