Integrate with respect to x ) dy/dx= 6x^5

The integral of any equation let the example be dy/dx = ax^n The integral of (RHS) dy/dx (because when we integrate we are integrating both sides) is y The integral of (LHS) ax^n is  [ax^(n+1)]/[n+1] when integrating there is always a constant that is unknown without any other equations that hold. Thus the integral is y= [ax^(n+1)]/[n+1] +C (Where C is a currently unknown constant)

NM
Answered by Nojus M. Maths tutor

4528 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stable points of the following function, determine wether or not they are maxima or minima. y= 5x^3 +9x^2 +3x +2


Differentiate x^2 from first principles


Find the an expression for dy/dx of the function y=(4x+1)ln(3x+1) and the gradient at the point x=1.


Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences