Integrate with respect to x ) dy/dx= 6x^5

The integral of any equation let the example be dy/dx = ax^n The integral of (RHS) dy/dx (because when we integrate we are integrating both sides) is y The integral of (LHS) ax^n is  [ax^(n+1)]/[n+1] when integrating there is always a constant that is unknown without any other equations that hold. Thus the integral is y= [ax^(n+1)]/[n+1] +C (Where C is a currently unknown constant)

NM
Answered by Nojus M. Maths tutor

4969 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate the curve y = 4x^2 + 7x + 1? And how do you find the gradient of this curve?


Integrate cos(x)sin^2(x)


Find dy/dx when y = 2ln(2e-x)


f(x) = e^(sin2x) , 0 ≤ x ≤ pi (a). Use calculus to find the coordinates of the turning points on the graph of y = f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning