By consdering partial fractions find the integral of (1-x)/(5x-6-x^2) between x = 1 and x = 0, give your answer in an exact form.

The answer is Ln8/9, by first converting (1-x)/(5x-6-x^2) into partial fractions you get 1/(2-x) + 2/(x-3), the next step is a simple integration by inspection followed by log manipulations to get the final answer.

OA
Answered by Omar A. Maths tutor

3044 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you 'rationalise the denominator'?


Split 1/x^2-1 into partial fractions


Differentiate y=ln(ln(x)) with respect to x.


How to find and classify stationary points (maximum point, minimum point or turning points) of curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences