By consdering partial fractions find the integral of (1-x)/(5x-6-x^2) between x = 1 and x = 0, give your answer in an exact form.

The answer is Ln8/9, by first converting (1-x)/(5x-6-x^2) into partial fractions you get 1/(2-x) + 2/(x-3), the next step is a simple integration by inspection followed by log manipulations to get the final answer.

OA
Answered by Omar A. Maths tutor

3305 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined for x > 0. The gradient of the curve at the point (x,y) is given by dy/dx = x^(3/2)-2x. Show that this curve has a minimum point and find it.


A curve has equation y = 3x^3 - 7x + 10. Point A(-1, 14) lies on this curve. Find the equation of the tangent to the curve at the point A.


Demonstrate that (2^n)-1 is not a perfect square for any n>2, n ∈ N.


Solve: 2 sin(2x) = (1-sin(x))cos(x) for 0<x<2*Pi and give any values of x, if any, where the equation is not valid


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning