Given that y=((3x+1)^2)*cos(3x), find dy/dx.

As why is in the for y=uv where u and v are funtions of x, dy/dx=u'v+v'u (where ' implies the derivative) u=(3x+1)2, v=cos(3x) therefore using the chain rule u'=23(3x+1)=18x+6 and v'=-3sin(3x). Using this, dy/dy=(18x+6)*cos(3x)-3(3x+1)2*sin(3x)

WR
Answered by William R. Maths tutor

3719 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate x^x


A curve has parametric equations x = 1 - cos(t), y = sin(t)sin(2t) for 0 <= t <= pi. Find the coordinates where the curve meets the x-axis.


If x=-2,1,2 and the y intercept is y=-8 for y=ax^3+bx^2+cx+d, what is a, b, c and d


Rationalise the complex fraction: (8 + 6i)/(6 - 2i)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning