Given that y=((3x+1)^2)*cos(3x), find dy/dx.

As why is in the for y=uv where u and v are funtions of x, dy/dx=u'v+v'u (where ' implies the derivative) u=(3x+1)2, v=cos(3x) therefore using the chain rule u'=23(3x+1)=18x+6 and v'=-3sin(3x). Using this, dy/dy=(18x+6)*cos(3x)-3(3x+1)2*sin(3x)

WR
Answered by William R. Maths tutor

3750 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify √32+√18 to a*√2 where a is an integer


Find dy/dx in terms of t for the curve defined by the parametric equations: x = (t-1)^3, y = 3t - 8/t^2, where t≠0


a typical question would be a setof parametric equations y(t) and x(t), asking you to find dy/dx and then the tangent/normal to the curve at a certain point (ie t = 2)


A quantity N is increasing with respect to time, t. It is increasing in such a way that N = ae^(bt) where a and b are constants. Given when t = 0, N = 20, and t = 8, N = 60, find the value: of a and b, and of dN/dt when t = 12


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning