Find the exact solution, in its simplest form, to the equation 2ln(2x+1) - 10 = 0.

We want to "undo" every step of the equation until we have just x on one side. So first add 10 to each side and then divide both sides by 2 to give ln(2x+1) = 5. Take the exponential of each side to give 2x+1 = e^5. Finally subtract 1 and divide by 2 on each side resulting in x =(e^5 -1)/2.

EB
Answered by Eleanor B. Maths tutor

5368 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following with respect to x: e^(10x) + ln(6x+2)


What is the difference between definite and indefinite integrals?


Differentiate y = 7(x)^2 + cos(x)sin(x)


Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning