The curve C has the equation: 2(x^2)y + 2x + 4y – cos (πy) = 17 use implicit differentiation to find dy/dx in terms of x and y

Using the product rule: d/dx(ab)=ab’ + a’b where a and b are variables which have been differentiated with respect to x

Derivative: 2(x^2(dy/dx)+2xy) + 2 + 4dy/dx+πsin(πy)dy/dx=0

Expand brackets: 2x^2(dy/dx)+4xy+2+4dy/dx+πsin(πy)dy/dx=0

Collect dy/dx terms: dy/dx(2x^2+4+πsin(πy))+4xy+2=0

Subtract non dy/dx terms: dy/dx(2x^2+4+πsin(πy))=-(4xy+2)
Divide through by 2x^2+4+πsin(πy): dy/dx=-(4xy+2)/(2x^2+4+πsin(πy))

GG
Answered by George G. Maths tutor

5995 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary point of the function f(x) = x^2 +2x + 5


Why do we get cos(x) when we differentiate sin(x)?


The line AB has equation 5x+3y+3=0. The line AB is parallel to the line with equation y=mx+7 . Find the value of m.


How do you find the integral of sin^2(x) dx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning