how can differentiate using the product and chain rule? e.g y=(4x+1)^3(sin2x), find dy/dx.

First you have to identify the equation for y is a product. Then you can apply the product rule using (4x+1)^3 as one term and sin2x as the other. First you differentiate (4x+1)^3 using the chain rule. You do this by multiplying the expression by the exponent which is 3 then differentiate what is inside the bracket and multiply by this then you decrease the exponent by one. Once this first term is differentiated you multiply by the second term sin2x. Then you add the first term (4x+1)^3 multiplied by the derivative of sin(2x), which again uses the chain rule.

RJ
Answered by Rajvir J. Maths tutor

4115 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation 2x^2y+2x+4y-cos(pi*y)=17 A) Use implict differenciation to find dy/dx B) point P(3,0.5) lies on C, find the x coodinate of the point A at which the normal to C at P meets the x axis.


Discriminants and determining the number of real roots of a quadratic equation


Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0


A curve has equation y = f(x) and passes through the point (4, 22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7, use integration to find f(x), giving each term in its simplest form


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences