If z1 = 3+2i, z2= 4-i, z3=1+i, find and simplify the following: a) z1 + z2, b) z2 x z3, c)z2* (complex conugate of z2), d) z2/z3.

(a) For part a, simply add the real terms together and the imaginary terms together. z1+z= (3+2i)+(4-i) = 7+i b).     

(b) For part b, multiply the brackets out, remembering that i2=-1. z2 x z3 = (4-i)(1+i) = 4 - i + 4i + 1 = 5+3i.      

(c) To find the complex conjugate, you just need to change the sign of the imaginary term. z2* = 4+i .     

(d) To find this, you need to use all of the previous skills. To simplify a complex fraction, you need to multiply both the numerator and denominator by the complex conjugate of the denominator. This results in the denominator having no imaginary terms. z2/z3 = (4-i)/(1+i) = (4-i)(1-i)/(1+i)(1-i) = (4-i-4i-1)/(1+i-i+1) = (3-5i)/2 = 3/2 + 5/2i.     

JS
Answered by Jaspa S. Maths tutor

13719 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A


How to integrate and differentiate ((3/x^2)+4x^5+3)


The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning