The point A lies on the curve with equation y=x^0.5. The tangent to this curve at A is parallel to the line 3y-2x=1 . Find an equation of this tangent at A. [5 marks]

Differentiate equation

dy/dx=0.5*x-0.5

Gradient is the same as the second equation

2/3=0..5*x-0.5 

Solving this will give the x coordinate

x = 9/16 

Sub into equation for y coordinate

y = (9/16)0.5

Solve for C - constant (Y = Mx + C)

c = 3/4 - (2/3)*(9/16)

c = 3/8

Form equation

y = (2/3)x + 3/8

AM
Answered by Arnold M. Maths tutor

6388 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation y=((x^2+4)(x-3))/2*x where x is not equal to 0 . Find the tangent to the curve C at the point where x=-1 in the form y=mx+c


A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .


A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.


Why is |z| = 1 a circle of radius one? (FP2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning