How do I solve simultaneous equations by substitution?

Often, substitution is used when dealing with quadratic simultaneous equations as the other method, elimination, is more straightforward and can be used to solve linear equations but it cannot be used for quadratic equations. Here is an example of a set of quadratic simultaneous equations:  x2 + y= 4    y = 3x -2 . In order to solve simultaneous equations by substitution, you substitute one of the squared terms in the quadratic equation using the linear equation.  So for this example, we would substitue yfor (3x -2)as the linear equation tells us y = 3x-2 .  Our equation is now x2 + (3x -2)2 = 4 . Now we expand to solve for our variable (x in this case) as normal x+ 9x- 12x + 4 = 4 becomes 10x- 12x = 0  becomes 5x - 6 = 0  becomes 5x = 6 means x = 6/5 . Then once we have our first variable, in this case x, we put that back into the linear equation to find the other variable, in this case y. So  y = 3x -2 becomes y = 3(6/5) -2 means y =  8/5 . And there we have our solution!

NM
Answered by Niamh M. Maths tutor

5076 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Why does the quadratic formula give solution to quadratic equation


The probability that it rains on a given day is 0.15. The probability that a football match is cancelled when it rains is 0.65. If it doesn't rain, the probability that the match is not cancelled is 0.95. What is the chance that the match is cancelled?


What is the equation of the tangent to the circle x^2 + y^2 = 25 at the point (-3, -4)?


Can you explain when we flip the inequality direction when solving inequalities.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning