How do I solve simultaneous equations by substitution?

Often, substitution is used when dealing with quadratic simultaneous equations as the other method, elimination, is more straightforward and can be used to solve linear equations but it cannot be used for quadratic equations. Here is an example of a set of quadratic simultaneous equations:  x2 + y= 4    y = 3x -2 . In order to solve simultaneous equations by substitution, you substitute one of the squared terms in the quadratic equation using the linear equation.  So for this example, we would substitue yfor (3x -2)as the linear equation tells us y = 3x-2 .  Our equation is now x2 + (3x -2)2 = 4 . Now we expand to solve for our variable (x in this case) as normal x+ 9x- 12x + 4 = 4 becomes 10x- 12x = 0  becomes 5x - 6 = 0  becomes 5x = 6 means x = 6/5 . Then once we have our first variable, in this case x, we put that back into the linear equation to find the other variable, in this case y. So  y = 3x -2 becomes y = 3(6/5) -2 means y =  8/5 . And there we have our solution!

NM
Answered by Niamh M. Maths tutor

5530 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 10 boys and 20 girls in a class. The mean mark in a test for all the class is 60. The mean mark for the girls is 54. Work out the mean mark for the boys.


There are 5 red balls and 7 green balls in a bag. A ball is taken from the bag at random and not replaced. Then a second ball is taken from the bag. What is the probability that the 2 balls are the same colour?


What is a vector?


Simplify: ((3x^2)-x-2)/(x-1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning