Differentiate the following equation: y = 2(x^3) - 6x

Firstly we look at the term 2(x^3). The power of x (in this case 3) is multiplied by the factor of x (in this case 2) and the power is then reduced by 1. This means it is 2x3(x^{3-1}) which simplifies to 6(x^2) This process is repeated for the second term in the sequence which is -6x. The power of x is 1 so when multipled by -6 it stays as -6. The power of x is reduced by 1 which makes it x^0. Anything to the power of 0 is 1 so the term -6x becomes -6. Below is the working out written mathematically: y = 2(x^3) -6x dy/dx = 6(x^2) - 6 dy/dx = 6(x^2 -1)

AW
Answered by Anna W. Maths tutor

3565 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate y=x^x?


A circle is given by the equation x^2+y^2-20x-24y+195=0. Draw this circle.


What is the integral of ln(x)? Hint: use parts for this integration


How do I find the co-ordinates of a stationary point of a given line and determine whether it is a minimum or a maximum point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning