Differentiate 2x/cos(x)

Given that you have a fraction in the question, you are clearly asked to use the quotient rule. In order to do this, you should label the numerator u, and the denominator v, like this: u = 2x v=cos(x). Now, you should differentiate (multiply by the power and subtract 1 from the power) both of these to find u' and v'. For u, which is 2x^1, this is simply a question of removing the x, and so: u' = 2. For v, it is a matter of remembering the derivatives of trigonometric functions. In this case, the differential of cosx, v', is -sinx. And so we have:

u = 2x  v = cos(x)  u' = 2  v'= -sinx 

Now sub all of these into the quotient rule : (vu' - uv')/v^2 

This gives us (2cos(x) + 2xsin(x))/cos^2(x)

JS
Answered by James S. Maths tutor

8702 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of x and y for which dy/dx = 0 in y= x^3 - 4x^2 - 3x +2


A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


differentiate- X^3- 2X^2+3


Differentiate f(x) = (x+3)/(2x-5) using the quotient rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning