By first proving that sin2θ=2sinθcosθ, calculate ∫1+sinθcosθ dθ.

We have, from the formula book, sin⁡(A±B)=sinAcosB±cosAsinB Using A=B=θ, we have sinθ+θ=sinθcosθ+cosθsinθ Which we can simplify to sin2θ=2sinθcosθ as required. We can then substitute this into the integral: 1+1/2sin2θ dθ From this we can calculate the integral, 1+1/2sin2θ dθ =θ-1/4cos2θ+c where c is an arbitrary constant.

AH
Answered by Abigail H. Maths tutor

7279 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I answer this question? Use factor theorem to show (x-2) is a factor of f(x) = 2x^3 -7x^2 +4x +4.


Express 2Cos(a) - Sin(a) in the form RCos(a+b) Give the exact value of R and the value of b in degrees to 2 d.p.


Differentiate the function f(x) = 3x^2/sin(2x)


A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning