By first proving that sin2θ=2sinθcosθ, calculate ∫1+sinθcosθ dθ.

We have, from the formula book, sin⁡(A±B)=sinAcosB±cosAsinB Using A=B=θ, we have sinθ+θ=sinθcosθ+cosθsinθ Which we can simplify to sin2θ=2sinθcosθ as required. We can then substitute this into the integral: 1+1/2sin2θ dθ From this we can calculate the integral, 1+1/2sin2θ dθ =θ-1/4cos2θ+c where c is an arbitrary constant.

AH
Answered by Abigail H. Maths tutor

6512 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area contained under the curve y =3x^2 - x^3 between 0 and 3


Integrate ((x^3)*lnx)dx


Solve the differential equation : dy/dx - x^3 -5x = 0


A curve C has equation y=(2x-3)^5. Find the equation of the normal of this curve at point P with y coordinate -32.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences