By first proving that sin2θ=2sinθcosθ, calculate ∫1+sinθcosθ dθ.

We have, from the formula book, sin⁡(A±B)=sinAcosB±cosAsinB Using A=B=θ, we have sinθ+θ=sinθcosθ+cosθsinθ Which we can simplify to sin2θ=2sinθcosθ as required. We can then substitute this into the integral: 1+1/2sin2θ dθ From this we can calculate the integral, 1+1/2sin2θ dθ =θ-1/4cos2θ+c where c is an arbitrary constant.

AH
Answered by Abigail H. Maths tutor

7106 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.


Which Real values of x satisfy 3/ln(x) = ln(x) + 2?


How do I integrate sin^2 (x) dx?


Find the location and nature of the turning point of the line y=-x^2+3x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning