By first proving that sin2θ=2sinθcosθ, calculate ∫1+sinθcosθ dθ.

We have, from the formula book, sin⁡(A±B)=sinAcosB±cosAsinB Using A=B=θ, we have sinθ+θ=sinθcosθ+cosθsinθ Which we can simplify to sin2θ=2sinθcosθ as required. We can then substitute this into the integral: 1+1/2sin2θ dθ From this we can calculate the integral, 1+1/2sin2θ dθ =θ-1/4cos2θ+c where c is an arbitrary constant.

AH
Answered by Abigail H. Maths tutor

7241 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate 4x^3 + 3x


Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.


Express (9x^2 + 43x + 8)/(3+x)(1-x)(2x+1) in partial fractions.


Sketch the graph of y=3sin(2x +pi/2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning