Differentiate tan^2(x) with respect to x

d/dx(tan^2(x)) is not a known differential, and therefore requires a substitution to calculate it using simpler known differentials.

Using the identity sin^2(x) + cos^2(x) = 1, the equation can be divided through by cos^2(x) to give tan^2(x) + 1 = sec^2(x). Therefore tan^2(x) = sec^2(x) - 1 = 1/cos^2(x) - 1. The differential of 1 is 0, so we only need to worry about the sec^2(x) term. Using the Quotient rule, where u=1 and v=cos^2(x), d/dx(sec^2(x)) = d/dx(1/cos^2(x)) = (0 - (-2sin(x))cos(x))/cos^4(x) = 2sinx/cos^3(x).

HA
Answered by Harry A. Maths tutor

18330 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral of sin^x dx


Given that: y = 3x^2 + 6x^1/3 + (2x^3 - 7)/(3x^1/2), x > 0 Find dy/dx, give each term in its simplest form


Find the equation of the straight line tangent to the curve y=2x^3+3x^2-4x+7, at the point x=-2.


Given that y = 3x(^2) + 6x(^1/3) + (2x(^3) - 7)/(3(sqrt(x))) when x > 0 find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning