Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts

Recall that ∫uv'=uv- ∫u'v Set u=sin²(x), v'=1 Therefore u'=2sin(x)cos(x) and v=x which gives us the following:

∫sin²(x)dx = xsin²(x) - ∫2xsin(x)cos(x)dx

The second integral in the above expression is given in the question so we then have the form:

∫sin²(x)dx = xsin²(x) +1⁄2[xcos(2x)-1⁄2sin(2x)]

which can be rearranged to give:

∫sin²(x)dx = 1⁄2x[2sin²(x) + cos(2x)] - 1⁄4sin(2x) + c

We can then employ the identity: cos(2x) = cos²(x) - sin²(x) to give us:

∫sin²(x)dx = 1⁄2x[sin²(x) + cos²(x)] - 1⁄4sin(2x) + c

Finally the identity: sin²(x) + cos²(x) = 1 is used to produce:

∫sin²(x)dx = 1⁄2x- 1⁄4sin(2x) + c

where c is the constant of integration

NM
Answered by Nick M. Maths tutor

5399 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent line to the parabola y=x^2+3x+2 at point P(1, 6).


Why is there more than one solution to x^2 = 4?


solve the equation 2cos x=3tan x, for 0°<x<360°


Having a rectangular parking lot with an area of 5,000 square yards that is to be fenced off on the three sides not adjacent to the highway, what is the least amount of fencing that will be needed to complete the job?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning