How do you solve trigonometric equations?

To help explain we will use the following example: Show that cos(2x) = 2cos2x - 1. Hence solve the equation cos(2x) + cosx = 0 for 0o < x < 360o. Answer: We know from our sum-difference formulas that cos(u+v) = cos(u)cos(v) - sin(u)sin(v) and in this case u = v = x. Simplifying to cos(2x) = cos2x - sin2x. We also know from our pythagorean identities that sin2x + cos2x = 1, implying that sin2x = 1 - cos2x. We can substitute this into our equation for cos(2x), giving cos(2x) = cos2x - (1 - cos2x). Expanding the brackets gives cos2x - 1 + cos2x. Simplifying gives 2cos2x - 1. This completes the first part of the question.  We are given the equation cos(2x) + cosx = 0 we can now substutute in cos(2x) = 2cos2x - 1 which gives 2cos2x - 1 + cosx = 0. Using the quadratic formula we find that cosx = (-1 + 3)/4 = 0.5 or cosx = (-1 - 3)/4 = -1. To find x we use inverse cos: x = cos-1(0.5) = 60o or x = cos-1(-1) = 180o. We can then sketch the cos(x) graph, 0o < x < 360o, find the points where x = 60o and 180o. We then draw vetricle lines across our sketch and find where these verticle lines touch the graph, this finds other solutions within the range, in this case there is one more solution, x = 300o.  

JY
Answered by Jessica Y. Maths tutor

4531 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x)=x^3-6x+3. i)Differentiate f(x) to find dy/dx. ii) Given that dy/dx = 12, find the value of x.


Given the circumference x^2 - 2x + y^2 = 3, find the position of the center P and the value of the Radius. Then find the intercepts with the y axis and the tangent to the circumference at the positive y intercept.


Write down the vector equation of the line l through the point (1,-1,2) and parallel to the vector 2i + 4k


The first term of an arithmetic series is a and the common difference is d. The 12th term is 66.5 and the 19th term is 98. Write down two equations in a and d then solve these simultaneous equations to find a and d.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning