express the following fraction in the form of m + (n)^1/2. the fraction is ((3*(5)^1/2)^2 - 7)/(3 + 7*(5)^1/2). where m,n are real numbers.

first of all you would see that at the bottom of the fraction it is not an integer so first of all you would need to rationalise the denominator. the denominator is the bit at the bottom of the fraction. You would do this by multiplying both the top and bottom of the fraction but the number which is the conjugate to that of the number on the denominator, in this case it would be (3 - 7*(5)^1/2). from this you would get an integer on the bottom on the fraction, which here would be 354 . from here you would need to multiple the numerator by the same thing you did on the denominator and then you are able to get a number in the form m + n(5)1/2, which in this case is (114 - 266*(5)^1/2)/354

HC
Answered by Hugh C. Maths tutor

3266 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


If y = 2(x^2+1)^3, what is dy/dx?


Find values of x for which 2x^2 < 5x + 12


In a triangle ABC, side AB=10 cm, side AC=5cm and the angle BAC=θ, measured in degrees. The area of triangle ABC is 15cm(sq). Find 2 possible values for cosθ and the exact length of BC, given that it is the longest side of the triangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning