The gradient of a curve is defined as Dy/dx = 3x^2 + 3x and it passes through the point (0,0), what is the equation of the curve

Integrate this = (3x^3)/3 + (3x^2)/2 + c So y = x^3 + (3x^2)/2 + c Using point (0,0), 0 = 0 + 0 + c so c = 0. Full equation of the curve is therefore x^3 + (3x^2)/2

LT
Answered by Laura T. Maths tutor

5968 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate y=sin(cos(x))?


How do i find dy/dx in terms of t for two parametric equations that are in terms of t.


By forming and solving a quadratic equation, solve the equation 5*cosec(x) + cosec^2(x) = 2 - cot^2(x) in the interval 0<x<2*pi, giving the values of x in radians to three significant figures.


Find the exact gradient of the curve y=ln(1-cos2x) at the point with x-coordinate π/6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning