The equation of a circle is x^2-6x+y^2+4y=12. Complete the square to find the centre and radius of the circle.

When we complete the square, we're looking for an equation that looks like (x-a)2 + (y-b)2 = r2, where (a,b) is the centre and r is the radius. When we expand brackets using FOIL, the x part is (x2-2ax+a2). This means the term with x in it has a coefficient of 2a. Therefore halving it will give us a! So let's apply this to our equation. The x term has a coefficient of -6 and the y term has a coefficient of +4. Dividing these by 2 we get -3 and 2. So the centre is (-3,2)! Now since (-3)2=9 and (2)2=4 we can add these on two complete the squares: x2-6x+9-9 + y2+4x+4-4=12 (x-3)2-9 + (y+2)2 -4 = 12 (x-3)2 + (y+2)2 = 25 (x-3)2 + (y+2)2 = 52 So the radius is 5!

HA
Answered by Hubert A. Maths tutor

4485 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you solve a quadratic inequality eg find the values of x for which x^2 -6x +2 < -3


if f(x) = 4x^2 - 16ln(x-1) - 10, find f'(x) and hence solve the equation f'(x)=0.


The function f(x)=x^2 -2x -24x^(1/2) has one stationary point. Find the value of x when f(x) is stationary, and hence determine the nature of this stationary point.


How do we differentiate y = arctan(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning