Given a fixed parabola and a family of parallel lines with given fixed gradient, find the one line that intersects the parabola in one single point

Let the parabola be y=x2 and let the family of lines be y=2x+c, in order to study the intersection points we need to consider the second order linear system given by having the two equations above. Hence, we get x2 -2x-c=0 and this equation has one single solution if and only if -c=1.

Therefore, the solution line is y=2x-1

FT
Answered by Francesca T. Maths tutor

2785 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal to the curve y = 2x^2 -3x +7 at the point x = 1.


Find the coordinates of the stationary points y=x^4-8x^2+3


Differentiate(dx) xy+4y-13


Split the following expression into partial fractions of the form A/(x-3) + B/(4x+2) : (19x-15)/(4x+2)(x-3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences