Given a fixed parabola and a family of parallel lines with given fixed gradient, find the one line that intersects the parabola in one single point

Let the parabola be y=x2 and let the family of lines be y=2x+c, in order to study the intersection points we need to consider the second order linear system given by having the two equations above. Hence, we get x2 -2x-c=0 and this equation has one single solution if and only if -c=1.

Therefore, the solution line is y=2x-1

FT
Answered by Francesca T. Maths tutor

3330 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the general solution of the equation tan(2x + pi/2) = SQRT(3), giving your answer for x in terms of π in a simplified form.


Given a function f(x)=3x^2+5x-1, find its derivative.


∫2x(x+2)^(1/2) dx evaluated from 0->2


Express 3(x^2) - 12x + 5 in the form a(x - b)^2 - c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning