Integrate ln(x) wrt dx

Integrate by parts. First rewrite the integral in the form udv/dx, which is (1)ln(x). Then integrate (1)ln(x) wrt dx by assigning u=ln(x) du/dx=1/x and dv/dx=1 v=x. We can determine the integral of ln(x), using the following formula for integration by parts: integral of udv/dx wrt x = (uv) − (integral of vdu/dx wrt x ). 

ST
Answered by Sathurthini T. Maths tutor

4698 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.


Use the chain rule to differentiate y=1/x^2-2x-1


Express (5-√ 8)(1+√ (2)) in the form a+b√2 , where a and b are integers


How do you integrate sin^2(3x)cos^3(3x) dx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning