Integrate ln(x) wrt dx

Integrate by parts. First rewrite the integral in the form udv/dx, which is (1)ln(x). Then integrate (1)ln(x) wrt dx by assigning u=ln(x) du/dx=1/x and dv/dx=1 v=x. We can determine the integral of ln(x), using the following formula for integration by parts: integral of udv/dx wrt x = (uv) − (integral of vdu/dx wrt x ). 

ST
Answered by Sathurthini T. Maths tutor

4411 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the solutions of the equation: sin(x - 15degrees) = 0.5 between 0<= x <= 180


Express (3x^2 - 3x - 2)/(x-1)(x-2) in partial fractions


Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.


How do you differentiate (2x+xe^6x)/(9x-(2x^2)-ln(x)) w.r.t. x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning