Use integration by parts to integrate ∫ xlnx dx

∫ u(dv/dx) dx = uv − ∫ v(du /dx)dx is the Integration by Parts formula. 

If you set u=lnx, differentiation (rememeber from tables) leads to du/dx= 1/x, and dv/dx=x and so v=x^2/2 (raise power by one then divide by that).

Plugging this into the equation, f(x)=(x^2/2)lnx- ∫(x^2/2)/x dx, just taking the RHS integral -> 1/2∫x dx = x^2/4 +C and so combining all of this f(x)=(x^2/2)lnx-x^2/4 +C. 

MM
Answered by Minty M. Maths tutor

21694 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations x= 2sin(t) , y= cos(2t) + 2sin(t) for -1/2 π≤t≤ 1/2π , show that dy/dx = - 2sin(t)+ 1


Differentiate y=x^3*(x^2+1)


A ball is fired from a cannon at 20m/s at an angle of 56degrees to the horizontal. Calculate the horizontal distance the ball travels as well as its maximum height reached.


Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning