Use integration by parts to integrate ∫ xlnx dx

∫ u(dv/dx) dx = uv − ∫ v(du /dx)dx is the Integration by Parts formula. 

If you set u=lnx, differentiation (rememeber from tables) leads to du/dx= 1/x, and dv/dx=x and so v=x^2/2 (raise power by one then divide by that).

Plugging this into the equation, f(x)=(x^2/2)lnx- ∫(x^2/2)/x dx, just taking the RHS integral -> 1/2∫x dx = x^2/4 +C and so combining all of this f(x)=(x^2/2)lnx-x^2/4 +C. 

MM
Answered by Minty M. Maths tutor

20816 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)


Find the derivative for y=5x^3-2x^2+7x-15


Express '6cos(2x) +sin(x)' in terms of sin(x).


Find the tangent to the curve y = x^2 + 3x + 2 that passes through the point (-1,0), sketch the curve and the tangent.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning