Solve these simultaneous equations, 2x+y=6 and 3y-x=11

First step is to choose between the three methods for solving simulataneous equations; elimination, substitution and eqaulity. In this case the best method is probably substitution, but personal preference is reasonable.  By rearranging the second equation to find an expression for x we get; x=3y-11. Substituting this into the first equation gives 2(3y-11)+y= 6y-22+y=7y-22=6. Add 22 to both sides for 7y=28 and hence by dividing both sides by 7, we obtain y=4.  Substitute this into either equation and solve, eg, 2x+4=6 gives x=1. Therefore the solution is x=1 and y=4.

EG
Answered by Edward G. Maths tutor

4671 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand (x + 4) (x - 8)


£X was invested for 5 years, earning compound interest of 2% per year. After 5 years the total value of the investment was £11,040.81. How do I calculate the value of the invested amount £X?


3^2 + 4^2 = x^2. Find x


Solve for x and y: 2x +5y + 5= 0 , 2y + 31= 5x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning