Answers>Maths>IB>Article

Show that the following system of equations has an infinite number of solutions. x+y+2z = -2; 3x-y+14z=6; x+2y=-5

Substitute values of one equation into another. 

(1) x+y+2z = -2; (2) 3x-y+14z=6; x+2y=-5 (3).

Substitute x in (1) and (2) from (3).

We get -y+2z=3 in (1). 

We get -7y+14z=21 in (3).

Since (3) is (1)*7, we can conclude that the system has infinite solutions.

ES
Answered by Egidijus S. Maths tutor

7778 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

IB exam question: Let p(x)=2x^5+x^4–26x^3–13x^2+72x+36, x∈R. For the polynomial equation p (x) = 0 , state (i) the sum of the roots; (ii) the product of the roots.


Consider f (x) = logk (6x - 3x 2 ), for 0 < x < 2, where k > 0. The equation f (x) = 2 has exactly one solution. What is the value of k?


What are the key elements to include in your Math assignment?


The normal to the curve x*(e^-y) + e^y = 1 + x, at the point (c,lnc), has a y-intercept c^2 + 1. Determine the value of c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning