Find the area enclosed by the curve y = 3x - x^2 and the x-axis

Start with finding limits by setting 3x - x^2 = 0, then factorise x(3 - x) = 0. Therefore x = 0 or 3. The area is the integral of 3x - x^2 between x = 0 and 3, sub in 3 and 0 into 3(x^2)/2 - (x^3)/3, which gives 3*(3^2)/2 - (3^3)/3 - 0 = 9/2 square units.

SB
Answered by Sam B. Maths tutor

17584 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to perform integration by substitution. (e.g. Find the integral of (2x)/((4+(3(x^2)))^2)) (10 marks)


Differentiate F(x)=(25+v)/v


Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum


The line L has equation 7x - 2y + 11 = 0, Find the gradient of l


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning