Find the area enclosed by the curve y = 3x - x^2 and the x-axis

Start with finding limits by setting 3x - x^2 = 0, then factorise x(3 - x) = 0. Therefore x = 0 or 3. The area is the integral of 3x - x^2 between x = 0 and 3, sub in 3 and 0 into 3(x^2)/2 - (x^3)/3, which gives 3*(3^2)/2 - (3^3)/3 - 0 = 9/2 square units.

SB
Answered by Sam B. Maths tutor

17891 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do i solve differential equations?


integrate x^2 + 3x + 4


A curve has parametric equations x = 2 sin θ, y = cos 2θ. Find y in terms of x


Find the range of values of k for which x²+kx-3k<5 for some x, i.e. the curve y=x²+kx-3k goes below y=5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning