Differentiate [ x.ln(x)] with respect to x

The product rule is used to differentiate this since we are trying to differentiate the product of 2 parts--x and ln(x)So using the product rule which is d/dx=u.(dv/dx) +v.(du/dx)let u=x and v=ln(x)then du/dx=1 and dv/dx=1/x
So, d/dx[x.ln(x)]= x . 1/x + ln(x).1d/dx[x.ln(x)]=1 +ln(x)=ln(x) +1

OL
Answered by Omolola L. Maths tutor

4212 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the two real roots of the equation x^4 - 5 = 4x^2 . Give the roots in an exact form. [4]


Use the substitution u=4x-1 to find the exact value of 1/4<int<1/2 ((5-2x)(4x-1)^1/3)dx


Find all solutions of the equation in the interval [0, 2π]. 5 cos^3 x = 5 cos x


Given that y = sin(2x)(4x+1)^3, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning