Differentiate [ x.ln(x)] with respect to x

The product rule is used to differentiate this since we are trying to differentiate the product of 2 parts--x and ln(x)So using the product rule which is d/dx=u.(dv/dx) +v.(du/dx)let u=x and v=ln(x)then du/dx=1 and dv/dx=1/x
So, d/dx[x.ln(x)]= x . 1/x + ln(x).1d/dx[x.ln(x)]=1 +ln(x)=ln(x) +1

OL
Answered by Omolola L. Maths tutor

4080 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point A lies on the curve with equation y=x^0.5. The tangent to this curve at A is parallel to the line 3y-2x=1 . Find an equation of this tangent at A. [5 marks]


Why is the derivative of ln(x) equal to 1/x.


How do you sketch r=theta? I don't really understand polar coordinates.


Find the gradient of the equation y=e^2x.ln(4x^2) when x=5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning