Differentiate [ x.ln(x)] with respect to x

The product rule is used to differentiate this since we are trying to differentiate the product of 2 parts--x and ln(x)So using the product rule which is d/dx=u.(dv/dx) +v.(du/dx)let u=x and v=ln(x)then du/dx=1 and dv/dx=1/x
So, d/dx[x.ln(x)]= x . 1/x + ln(x).1d/dx[x.ln(x)]=1 +ln(x)=ln(x) +1

OL
Answered by Omolola L. Maths tutor

3726 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If n is an integer such that n>1 and f(x)=(sin(n*x))^n, what is f'(x)?


Given y= sqrt(x) + 4/sqrt(x) + 4 , find dy/dx when x=8 giving your answer in form Asqrt(2) where A is a rational number.


Differentiate: y = 3x^2 + 4x + 1 -4x^-1


How to "study" A-level Maths, not just learn?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences