Write x^2-4x+9 in the form (x-p)^2+q, where p and q are integers.

To complete this task we use a method called "Completing the square. For this we use a formula (a+b)^2=a^2+2ab+b^2.
Now we see that in the example we have a term x^2 so we put x^2=a^2 so we can have that x=a. Then -4x=2ab=2xb so b=-2. Then (x-2)^2=x^2-4x+4. In order to substitute this in the place of x^2-4x, we have to subtract -4. Then we have x^2-4x+9=(x-2)^2-4+9=(x-2)^2+5 which is in the required form (x-p)^2+q where p=2 and q=5.

MS
Answered by Maria S. Maths tutor

5321 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make x the subject of the equation y=(2(1+x))/(3x-1)


The recommended price of a ladder is £75. The ladder is sold in 2 shops, one with a 30% discount the other with a discount of 2/9. How much is the discount in the two shops and which is cheaper and by how much? Non-calculator


The perimeter of a right-angled triangle is 78 cm. The lengths of its sides are in the ratio 3: 4 : 6 Work out the area of the triangle.


Find a quarter of the area of a circle with a diameter of 10cm.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences