Write x^2-4x+9 in the form (x-p)^2+q, where p and q are integers.

To complete this task we use a method called "Completing the square. For this we use a formula (a+b)^2=a^2+2ab+b^2.
Now we see that in the example we have a term x^2 so we put x^2=a^2 so we can have that x=a. Then -4x=2ab=2xb so b=-2. Then (x-2)^2=x^2-4x+4. In order to substitute this in the place of x^2-4x, we have to subtract -4. Then we have x^2-4x+9=(x-2)^2-4+9=(x-2)^2+5 which is in the required form (x-p)^2+q where p=2 and q=5.

MS
Answered by Maria S. Maths tutor

5877 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Multiply (x+2) & (x+3)


A point A lies on the line y = 2x^2 - 8x + 2. A has y-coordinate (-4). Find all possible values for the x-coordinate of A.


Solve the equation 3a^2+4a+1=3 for all values of a. Give your answers to 3 significant figures.


The line l is a tangent to the circle x^2 + y^2 = 40 at the point A. A is the point (2, 6). The line l crosses the x-axis at the point P. Work out the area of triangle OAP.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning