Prove that 2cot2x+tanx=cotx

2cot2x= 2(1/tan2x)= 2(1/(2tanx/1-tan2x))=2(1-tan2x)/2tanx= (1-tan2x)/tanx(1-tan2x)/tanx +tanx=(1-tan2x)/tanx +tan2x/tanx=1/tanx=cotx

AD
Answered by Alisa D. Maths tutor

19448 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.


Find the an expression for dy/dx of the function y=(4x+1)ln(3x+1) and the gradient at the point x=1.


Integrate using by parts twice : ∫e^(x)*(cos(x))dx


The curve C has the equation y = 2x^2 -11x + 13. Find the equation of the tangent to C at the point P (2, -1).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences