Find dy/dx in terms of t for the curve given by the parametric equations x = tan(t) , y = sec(t) for -pi/2<t<pi/2.

We know that dy/dx = (dy/dt) * (dt/dx). Differentiating each of the equations with respect to t gives. dy/dt = sec(t) tan(t) and dx/dt = sec2(t). Since dt/dx = 1 / (dx/dt) we have that dt/dx = 1/(sec2(t)) = cos2(t). Substituting back into the first equation gives dy/dx = cos2(t) sec(t) tan(t) . Using the following identities. sec(t) = 1/cos(t) and tan(t) = sin(t)/cos(t) .dy/dx = sin(t)*(cos2(t)/cos2(t))= sin(t). So the final answer is dy/dx = sin(t)

OC
Answered by Oliver C. Maths tutor

5785 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of y=x^2-6x-16 at the point where the curve crosses the x-axis


If 1/(x(a-x)) is equivalent to B(1/x + 1/(a-x)), Express 'B' in terms of 'a'


Supposing y = arcsin(x), find dy/dx


What are the most important trig identities we need to know?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences