Find dy/dx in terms of t for the curve given by the parametric equations x = tan(t) , y = sec(t) for -pi/2<t<pi/2.

We know that dy/dx = (dy/dt) * (dt/dx). Differentiating each of the equations with respect to t gives. dy/dt = sec(t) tan(t) and dx/dt = sec2(t). Since dt/dx = 1 / (dx/dt) we have that dt/dx = 1/(sec2(t)) = cos2(t). Substituting back into the first equation gives dy/dx = cos2(t) sec(t) tan(t) . Using the following identities. sec(t) = 1/cos(t) and tan(t) = sin(t)/cos(t) .dy/dx = sin(t)*(cos2(t)/cos2(t))= sin(t). So the final answer is dy/dx = sin(t)

OC
Answered by Oliver C. Maths tutor

6441 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two points have coordinates (1,-6) and (-2,3). Find the equation of the line which joins them, and their midpoint.


Integrate (3x^2 - (1/4)x^-2 + 3) dx


Find the solutions to x^3+4x^2+x-5=1


Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning