Find dy/dx in terms of t for the curve given by the parametric equations x = tan(t) , y = sec(t) for -pi/2<t<pi/2.

We know that dy/dx = (dy/dt) * (dt/dx). Differentiating each of the equations with respect to t gives. dy/dt = sec(t) tan(t) and dx/dt = sec2(t). Since dt/dx = 1 / (dx/dt) we have that dt/dx = 1/(sec2(t)) = cos2(t). Substituting back into the first equation gives dy/dx = cos2(t) sec(t) tan(t) . Using the following identities. sec(t) = 1/cos(t) and tan(t) = sin(t)/cos(t) .dy/dx = sin(t)*(cos2(t)/cos2(t))= sin(t). So the final answer is dy/dx = sin(t)

OC
Answered by Oliver C. Maths tutor

6187 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve with equation y=f(x) passes through the point (1, 4/3). Given that f'(x) = x^3 + 2*x^0.5 + 8, find f(x).


Find the values of x where the curve y = 8 -4x-2x^2 crosses the x-axis.


Three forces, (15i + j) N, (5qi – pj) N and (–3pi – qj) N, where p and q are constants, act on a particle. Given that the particle is in equilibrium, find the value of p and the value of q. (Mechanics 1 June 2017)


How do I differentiate a function of x and y with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning