Find dy/dx in terms of t for the curve given by the parametric equations x = tan(t) , y = sec(t) for -pi/2<t<pi/2.

We know that dy/dx = (dy/dt) * (dt/dx). Differentiating each of the equations with respect to t gives. dy/dt = sec(t) tan(t) and dx/dt = sec2(t). Since dt/dx = 1 / (dx/dt) we have that dt/dx = 1/(sec2(t)) = cos2(t). Substituting back into the first equation gives dy/dx = cos2(t) sec(t) tan(t) . Using the following identities. sec(t) = 1/cos(t) and tan(t) = sin(t)/cos(t) .dy/dx = sin(t)*(cos2(t)/cos2(t))= sin(t). So the final answer is dy/dx = sin(t)

OC
Answered by Oliver C. Maths tutor

6443 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find dy/dx for the equation y = 6x ^(1/2)+x+3


Solve 2sin2θ = 1 + cos2θ for 0° ≤ θ ≤ 180°


A circle has equation: (x - 2)^2 + (y - 2)^2 = 16. It intersects the y-axis (y > 0) at point P and the x-axis (x < 0) at point Q. Find the equation of the line connecting P and Q and of the line perpendicular to PQ passing through the circle's centre.


A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning